Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.725
Filtrar
1.
Toxicol In Vitro ; 97: 105804, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447685

RESUMO

Podocytes play a critical role in the formation and maintenance of the glomerular filtration barrier and injury to these cells can lead to a breakdown of the glomerular barrier causing permanent damage leading to progressive chronic kidney disease. Matured podocytes have little proliferative potential, which makes them critical cells from a health perspective, but also challenging cells to maintain in vitro. Differentiating podocyte-like cells from induced pluripotent stem cells (iPSC) provides a novel and continuous source of cells. Here, we investigated the effect of a 24-h exposure to eight compounds, including the known glomerular toxins doxorubicin and pamidronate, on transcriptomic alterations in iPSC derived podocytes. Doxorubicin (50 nM), pamidronate (50 µM), sodium arsenite (10 µM), and cyclosporine A (15 µM) had a strong impact on the transcriptome, gentamicin (450 µg/ml), lead chloride (15 µM) and valproic acid (500 µM) had a mild impact and busulfan (50 µM) exhibited no impact. Gene alterations and pathways analysis provided mechanistic insight for example, doxorubicin exposure affected the p53 pathway and dedifferentiation, pamidronate activated several pathways including HIF1alpha and sodium arsenite up-regulated oxidative stress and metal responses. The results demonstrate the applicability of iPSC derived podocytes for toxicological and mechanistic investigations.


Assuntos
Arsenitos , Células-Tronco Pluripotentes Induzidas , Podócitos , Compostos de Sódio , Humanos , Podócitos/metabolismo , Transcriptoma , Xenobióticos/metabolismo , Pamidronato/farmacologia , Doxorrubicina/toxicidade , Perfilação da Expressão Gênica
2.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 1-9, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430048

RESUMO

Production of a thermostable laccase from Pleurotus florida was reported for the first time, both in submerged and solid-state fermentation using agro-industrial residues. This enzyme was purified using ammonium sulphate precipitation (60-90%), Sephadex G-100 and DEAE column ion exchange chromatography, respectively. The laccase was purified to 21.49 fold with an apparent molecular weight of 66 kDa and had an optimal pH of 5 with temperature stability at 60°C. Metal ions such as Cu2+ (91.26 µmole/mL/min), Mg2+ (68.15 µmole/mL/min), and Fe2+ (1.73 µmole/mL/min) enhanced the laccase activity, but Fe2+ (1.73µmole/mL/min) inhibited the enzyme activity. The purified laccase had Km and Vmax of 16.68 mM and 26.73 µmole/mL/min for guaiacol as a substrate. The isolated enzyme was characterized by FT-IR which revealed bands at 3655.0 cm-1, 2894.7 cm-1, and 1151.7 cm-1 corresponding to primary amines, C-H stretch, and amide -III, respectively. The enzymatic bio bleaching of paddy straw pulp was found to be most effective which resulted in a lowering of kappa number and yellowness by 19.47% & 17.84% whereas an increase in brightness and whiteness by 41.92%. & -19.61%. Thus, this might be stated that the crude laccase from P. florida can be exploited to reduce the toxic waste load for managing environmental pollution and helps in enhancing the yield and quality of the paper.


Assuntos
Lacase , Pleurotus , Lacase/química , Espectroscopia de Infravermelho com Transformada de Fourier , Peso Molecular , Compostos de Sódio
3.
J Dent ; 142: 104875, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309571

RESUMO

OBJECTIVE: The application of anti-inflammatories as topical desensitizers before dental bleaching is an approach to reduce bleaching-induced tooth sensitivity (TS). This randomized controlled trial compared the risk and intensity of TS and the color change resulting from in-office dental bleaching after using an experimental desensitizing gel containing ibuprofen and arginine. METHODS: Sixty-two participants with upper canine shades A2 or darker were randomly assigned to either the ibuprofen-arginine desensitizing group or the placebo group. The desensitizing gel was applied for 15 min before in-office bleaching with 35 % hydrogen peroxide gel for 50 min (2 sessions). To assess the absolute risk and intensity of TS, visual (0-10) and numeric rating (0-5) scales were used, and group comparisons were made using the McNemar test, Wilcoxon test, and paired Student t-test (α = 0.05). Color change was evaluated using Vita Classical, Vita Bleachedguide (ΔSGU), and Vita EasyShade (ΔEab, ΔE00, and ΔWID) before and one month after the bleaching procedure. Group comparisons for color change were done using a paired t-test (α = 0.05). RESULTS: The odds ratio for TS was 0.14 [95 % CI 0.02 to 0.6], meaning lower odds of TS for the desensitizing gel. A lower intensity of TS was also observed for the experimental group (p < 0.005) up to 48 h after bleaching. All color evaluation tools demonstrated effective and similar whitening for both groups (p > 0.05). CONCLUSIONS: Using the experimental desensitizing gel containing ibuprofen and arginine effectively reduced the risk and intensity of TS without compromising the bleaching efficacy. CLINICAL RELEVANCE: The topical application of ibuprofen/arginine on the in-office bleaching reduced risk and intensity of bleaching-induced tooth sensitivity.


Assuntos
Sensibilidade da Dentina , Clareadores Dentários , Clareamento Dental , Humanos , Sensibilidade da Dentina/induzido quimicamente , Sensibilidade da Dentina/prevenção & controle , Clareadores Dentários/efeitos adversos , Ibuprofeno/uso terapêutico , Clareamento Dental/efeitos adversos , Clareamento Dental/métodos , Peróxido de Hidrogênio/efeitos adversos , Compostos de Sódio , Arginina/uso terapêutico , Resultado do Tratamento
4.
Environ Toxicol Pharmacol ; 107: 104397, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401815

RESUMO

The actions of arsenite and arsenate on carbohydrate metabolism in the once-through perfused rat liver were investigated. The compound inhibited lactate gluconeogenesis with an IC50 of 25 µM. It also increased glycolysis and fructolysis at concentrations between 10 and 100 µM. This effect was paralleled by strong inhibition of pyruvate carboxylation (IC50 = 4.25 µM) and by a relatively moderate diminution in the ATP levels. The inhibitory action of arsenate on pyruvate carboxylation and lactate gluconeogenesis was 103 times less effective than that of arsenite. For realistic doses and concentrations («1 mM), impairment of metabolism by arsenate can be expected to occur solely after its reduction to arsenite. Arsenite, on the other hand, can be regarded as a strong short-term modifier of lactate gluconeogenesis and other pathways. The main cause of the former is inhibition of pyruvate carboxylation, a hitherto unknown effect of arsenic compounds.


Assuntos
Arseniatos , Arsenitos , Compostos de Sódio , Ratos , Animais , Arseniatos/toxicidade , Arsenitos/toxicidade , Ácido Láctico/metabolismo , Ácido Pirúvico/farmacologia , Fígado , Metabolismo dos Carboidratos
5.
Chemosphere ; 352: 141260, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272137

RESUMO

The existence of the artificial sweetener acesulfame (ACE) in quantities of significance can negatively impact water quality, and its consumption has been associated with deleterious health effects. The present investigation explores the efficacy of heat-activated sodium persulfate (SPS) for eliminating ACE. The complete degradation of 0.50 mg L-1 of ACE was achieved within 45 min under a reaction temperature of 50 °C and 100 mg L-1 of SPS. The impact of thermal decomposition on ACE at a temperature of 60 °C was negligible. This study considers several factors, such as the SPS and ACE loading, the reaction temperature, the initial pH, and the water matrix of the reactor. The results indicate that the method's efficiency is positively correlated with higher initial concentrations of SPS, whereas it is inversely associated with the initial concentration of ACE. Furthermore, higher reaction temperatures and acidic initial pH levels promote the degradation of acesulfame. At the same time, certain constituents of the water matrix, such as humic acid, chlorides, and bicarbonates, can hinder the degradation process. Additionally, the data from LC-QToF-MS analysis of the samples were used to investigate transformation through suspect and non-target screening approaches. Overall, ACE's eight transformation products (TPs) were detected, and a potential ACE decomposition pathway was proposed. The concentration of TPs followed a volcano curve, decreasing in long treatment times. The ecotoxicity of ACE and its identified TPs was predicted using the ECOSAR software. The majority of TPs exhibited not harmful values.


Assuntos
Compostos de Sódio , Sulfatos , Poluentes Químicos da Água , Oxirredução , Poluentes Químicos da Água/análise , Temperatura Alta , Temperatura , Cinética , Edulcorantes/toxicidade , Edulcorantes/análise
6.
Chemosphere ; 351: 141174, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218242

RESUMO

Sodium persulphate (PS) is a highly effective oxidising agent widely used in groundwater remediation and wastewater treatment. Although numerous studies have examined the impact of PS with respect to the removal efficiency of organic pollutants, the residual effects of PS exposure on the biogeochemical parameters and microbial ecosystems of contaminated aquifers are not well understood. This study investigates the effects of exposure to different concentrations of PS on the biogeochemical parameters of petroleum-contaminated aquifers using microcosm batch experiments. The results demonstrate that PS exposure increases the oxidation-reduction potential (ORP) and electrical conductivity (EC), while decreasing total organic carbon (TOC), dehydrogenase (DE), and polyphenol oxidase (PO) in the aquifer. Three-dimensional excitation-emission matrix (3D-EEM) analysis indicates PS is effective at reducing fulvic acid-like and humic acid-like substances and promoting microbial metabolic activity. In addition, PS exposure reduces the abundance of bacterial community species and the diversity index of evolutionary distance, with a more pronounced effect at high PS concentrations (31.25 mmol/L). Long-term (90 d) PS exposure results in an increase in the abundance of microorganisms with environmental resistance, organic matter degradation, and the ability to promote functional genes related to biological processes such as basal metabolism, transmission of genetic information, and cell motility of microorganisms. Structural equation modeling (SEM) further confirms that ORP and TOC are important drivers of change in the abundance of dominant phyla and functional genes. These results suggest exposure to different concentrations of PS has both direct and indirect effects on the dominant phyla and functional genes by influencing the geochemical parameters and enzymatic activity of the aquifer. This study provides a valuable reference for the application of PS in ecological engineering.


Assuntos
Água Subterrânea , Microbiota , Petróleo , Compostos de Sódio , Sulfatos , Petróleo/toxicidade , Petróleo/metabolismo , Bactérias/genética , Bactérias/metabolismo , Água Subterrânea/química
7.
Ultramicroscopy ; 259: 113925, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38281370

RESUMO

We show the benefit of the use of atomic force microscopy (AFM) in spectroscopy force mode (FV: force volume) for evaluation of the cosmetic active effectiveness in improving the mechanical properties of human hair fibers cortex region. For this, we characterized human hair fibers without and with chemical damage caused by bleaching process. Fiber and resin (embedding material) data were obtained simultaneously in the mapping in order to have the resin data as a reference to ensure a coherent comparison between data from the different fiber groups. Our AFM results, which were evaluated using statistical tests, demonstrated the degradation of fibers after bleaching, corroborating the findings of transmission electron microscopy analysis and the effectiveness of a cosmetic active ingredient in improving the Young's modulus (elastic modulus) (E) of the damaged fibers. We also found a radial decrease in the natural logarithm of Young's modulus ln(E) along the cross-section of the active group fiber, which is compatible with confocal Raman spectroscopy analysis by other authors, demonstrating variation of the active permeation with depth. We note that Young's modulus was also determined by a tensile tester (macro-scale technique), in which it was not possible to obtain statistically significant differences between the groups, evidencing the advantage of the FV-AFM analysis. We also found an increase in ln(E) accompanied by a decrease in maximum adhesion force between tip and sample (negative Pearson correlation coefficient). This result can be explained by the fact that structures composed of hydrophobic components have a higher Young's modulus than structures composed of hydrophilic components.


Assuntos
Córtex Cerebral , Cabelo , Humanos , Microscopia de Força Atômica , Correlação de Dados , Módulo de Elasticidade , Ácido Hipocloroso , Compostos de Sódio
8.
Environ Toxicol ; 39(3): 1119-1128, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37853848

RESUMO

We recently reported that arsenic caused insulin resistance in differentiated human neuroblastoma SH-SY5Y cells. Herein, we further investigated the effects of sodium arsenite on IGF-1 signaling, which shares downstream signaling with insulin. A time-course experiment revealed that sodium arsenite began to decrease IGF-1-stimulated Akt phosphorylation on Day 3 after treatment, indicating that prolonged sodium arsenite treatment disrupted the neuronal IGF-1 response. Additionally, sodium arsenite decreased IGF-1-stimulated tyrosine phosphorylation of the IGF-1 receptor ß (IGF-1Rß) and its downstream target, insulin receptor substrate 1 (IRS1). These results suggested that sodium arsenite impaired the intrinsic tyrosine kinase activity of IGF-1Rß, ultimately resulting in a reduction in tyrosine-phosphorylated IRS1. Sodium arsenite also reduced IGF-1 stimulated tyrosine phosphorylation of insulin receptor ß (IRß), indicating the potential inhibition of IGF-1R/IR crosstalk by sodium arsenite. Interestingly, sodium arsenite also induced neurite shortening at the same concentrations that caused IGF-1 signaling impairment. A 24-h IGF-1 treatment partially rescued neurite shortening caused by sodium arsenite. Moreover, the reduction in Akt phosphorylation by sodium arsenite was attenuated by IGF-1. Inhibition of PI3K/Akt by LY294002 diminished the protective effects of IGF-1 against sodium arsenite-induced neurite retraction. Together, our findings suggested that sodium arsenite-impaired IGF-1 signaling, leading to neurite shortening through IGF-1/PI3K/Akt.


Assuntos
Arsênio , Arsenitos , Neuroblastoma , Compostos de Sódio , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Insulin-Like I , Fosfatidilinositol 3-Quinases/metabolismo , Neuritos/metabolismo , Fosforilação , Tirosina/metabolismo , Tirosina/farmacologia
9.
Int J Radiat Oncol Biol Phys ; 118(2): 485-497, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619790

RESUMO

PURPOSE: Stress granules (SGs) are cytoplasmic aggregates in which mRNAs and specific proteins are trapped in response to a variety of damaging agents. They participate in the cellular defense mechanisms. Currently, their mechanism of formation in response to ionizing radiation and their role in tumor-cell radiosensitivity remain elusive. METHODS AND MATERIALS: The kinetics of SG formation was investigated after the delivery of photon irradiation at different doses to head and neck squamous cell carcinoma cell lines with different radiosensitivities and the HeLa cervical cancer cell line (used as reference). In parallel, the response to a canonical inducer of SGs, sodium arsenite, was also studied. Immunolabeling of SG-specific proteins and mRNA fluorescence in situ hybridization enabled SG detection and quantification. Furthermore, a ribopuromycylation assay was used to assess the cell translational status. To determine whether reactive oxygen species were involved in SG formation, their scavenging or production was induced by pharmacologic pretreatment in both SCC61 and SQ20B cells. RESULTS: Photon irradiation at different doses led to the formation of cytoplasmic foci that were positive for different SG markers. The presence of SGs gradually increased from 30 minutes to 2 hours postexposure in HeLa, SCC61, and Cal60 radiosensitive cells. In turn, the SQ20B and FaDu radioresistant cells did not form SGs. These results indicated a correlation between sensitivity to photon irradiation and SG formation. Moreover, SG formation was significantly reduced by reactive oxygen species scavenging using dimethyl sulfoxide in SCC61 cells, which supported their role in SG formation. However, a reciprocal experiment in SQ20B cells that depleted glutathione using buthionine sulfoximide did not restore SG formation in these cells. CONCLUSIONS: SGs are formed in response to irradiation in radiosensitive, but not in radioresistant, head and neck squamous cell carcinoma cells. Interestingly, compared with sodium arsenite-induced SGs, photon-induced SGs exhibited a different morphology and cellular localization. Moreover, photon-induced SGs were not associated with the inhibition of translation; rather, they depended on oxidative stress.


Assuntos
Arsenitos , Neoplasias de Cabeça e Pescoço , Compostos de Sódio , Grânulos de Estresse , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Espécies Reativas de Oxigênio , Hibridização in Situ Fluorescente , Células HeLa , Tolerância a Radiação , Neoplasias de Cabeça e Pescoço/radioterapia
10.
Can J Microbiol ; 70(3): 102-108, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096506

RESUMO

Arsenic (As) is a metal with potentially toxic effects on different organisms. Hydrogen sulfide (H2S) plays a vital role in mitigating heavy metal toxicity by reducing oxidative stress in plants and animals. However, the role of H2S in alleviating arsenic toxicity in yeast cells remains unclear. In this study, the role of NaHS (exogenous physiological H2S) in alleviating As-induced yeast cell death was investigated. Yeast cells in the logarithmic phase were pretreated with 0.05 mmol/L NaHS for 6 h, and then incubated in the YPD medium with or without 1 mmol/L As. After 12 h of treatment, relative survival rate, H2S content, oxidative stress biomarkers, and antioxidant machinery were measured. Our results showed that sodium arsenite-induced yeast cell death and pretreatment with 0.05 mmol/L NaHS significantly alleviated sodium arsenite-induced cell death. Under sodium arsenite conditions, the levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) increased, accompanied by the inhibition of the catalase (CAT) activity and the downregulation of CTT1 expression. However, the activities of the superoxide dismutase (SOD) and glutathion peroxidase (GPX) increased, and the expression of SOD1 and GPX2 was markedly upregulated in the group treated with sodium arsenite. When yeast cells were pretreated with NaHS, the intracellular ROS and MDA levels decreased significantly, and the activities of SOD, CAT, and GPX increased significantly. This was associated with a significant increase in relative survival rate and H2S content compared to the arsenic treatment alone. Our findings indicate that NaHS alleviates sodium arsenite-induced yeast cell death, mainly by enhancing the antioxidant defense system.


Assuntos
Arsênio , Arsenitos , Sulfeto de Hidrogênio , Compostos de Sódio , Sulfetos , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Arsênio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Morte Celular
11.
J Hazard Mater ; 465: 133038, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38118197

RESUMO

Arsenic contamination is extremely threatening to the global public health. It was reported that sodium arsenite exposure induces serious kidney injury. However, the underlying mechanism is unclear. Ferroptosis is a newly characterized form of iron-dependent programmed cell death, which is implicated in the pathogenesis of various human diseases, including kidney injury. The lethal accumulation of iron-catalyzed lipid peroxidation is the fundamental biochemical characteristic of ferroptosis. Herein we report that sodium arsenite exposure initiates ferroptosis in mammalian HEK293, MEF and HT1080 cells, and induces ferroptosis-associated acute kidney injury in mice. RNA-binding protein G3BP1, the switch component of stress granules, is indispensable for sodium arsenite-induced ferroptosis in a stress granule-independent manner. Mechanistically, G3BP1 stabilizes IRP2, the master regulator of cellular iron homeostasis, through binding to and suppressing the translation of FBXL5 mRNA, which encodes the E3 ligase component to mediate IRP2 ubiquitination and proteasomal degradation. Sodium arsenite intoxication expedites this G3BP1-FBXL5-IRP2 axis and elevates cellular labile free iron, which is responsible for sodium arsenite exposure-induced lipid peroxidation and ferroptotic cell death. In summary, this study highlights a regulatory module comprising G3BP1-FBXL5-IRP2 axis in determining sodium arsenite-induced ferroptosis and ferroptosis-associated acute kidney injury in mice.


Assuntos
Injúria Renal Aguda , Arsenitos , Proteínas F-Box , Ferroptose , Compostos de Sódio , Humanos , Camundongos , Animais , DNA Helicases , Células HEK293 , Proteína 2 Reguladora do Ferro/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA , Ferro/metabolismo , Mamíferos/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteínas F-Box/química , Proteínas F-Box/genética , Proteínas F-Box/metabolismo
12.
Sci Rep ; 13(1): 15341, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714943

RESUMO

In-office bleaching, using hydrogen peroxide, is effective to remove dental enamel stains. However, bleaching agents can deteriorate surface properties of CAD-CAM materials. This in vitro study aimed to investigate the effect of in-office bleaching agents on Vickers hardness and surface topography of polished and unpolished dental CAD-CAM composite materials (Grandio blocs, Lava Ultimate, BRILLIANT Crios, Cerasmart), and a polymer-infiltrated ceramic network block (Vita Enamic). The specimens were randomly divided into two groups: unpolished or polished. The micro-hardness and surface topography of each group were measured before bleaching, after a 60 min bleaching period, and 24-h and one-month post-bleaching. In-office bleaching significantly influenced the Vickers hardness of both the polished and unpolished CAD/CAM composite blocks, with Vita Enamic exhibiting the least hardness stability among all groups. Furthermore, in-office bleaching significantly influenced the surface roughness of unpolished CAD/CAM composite blocks. There was a significant difference in hardness reduction between the polished and unpolished specimens for most of the investigated materials at different time points. The bleaching did not influence the surface roughness of the investigated polished group, except for Vita Enamic and Lava Ultimate. However, it did influence the surface roughness of the investigated materials in the unpolished group.


Assuntos
Clareadores , Dureza , Corantes , Desenho Assistido por Computador , Peróxido de Hidrogênio , Ácido Hipocloroso , Compostos de Sódio
13.
PeerJ ; 11: e15987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727686

RESUMO

Coral reefs face an uncertain future punctuated by recurring climate-induced disturbances. Understanding how reefs can recover from and reassemble after mass bleaching events is therefore important to predict their responses and persistence in a rapidly changing ocean. On naturally extreme reefs characterized by strong daily temperature variability, coral heat tolerance can vary significantly over small spatial gradients but it remains poorly understood how this impacts bleaching resilience and recovery dynamics, despite their importance as resilience hotspots and potential refugia. In the macrotidal Kimberley region in NW Australia, the 2016 global mass bleaching event had a strong habitat-specific impact on intertidal and subtidal coral communities at our study site: corals in the thermally variable intertidal bleached less severely and recovered within six months, while 68% of corals in the moderately variable subtidal died. We therefore conducted benthic surveys 3.5 years after the bleaching event to determine potential changes in benthic cover and coral community composition. In the subtidal, we documented substantial increases in algal cover and live coral cover had not fully recovered to pre-bleaching levels. Furthermore, the subtidal coral community shifted from being dominated by branching Acropora corals with a competitive life history strategy to opportunistic, weedy Pocillopora corals which likely has implications for the functioning and stress resilience of this novel coral community. In contrast, no shifts in algal and live coral cover or coral community composition occurred in the intertidal. These findings demonstrate that differences in coral heat tolerance across small spatial scales can have large consequences for bleaching resilience and that spatial patchiness in recovery trajectories and community reassembly after bleaching might be a common feature on thermally variable reefs. Our findings further confirm that reefs adapted to high daily temperature variability play a key role as resilience hotspots under current climate conditions, but their ability to do so may be limited under intensifying ocean warming.


Assuntos
Antozoários , Animais , Recifes de Corais , Austrália , Clima , Morte , Ácido Hipocloroso , Compostos de Sódio
14.
Molecules ; 28(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37764219

RESUMO

Using different bleaching materials to eliminate or reduce organic volatiles in deteriorated olive oils will positively affect its characteristics. This study aims to identify the volatiles of oxidized olive oil after physical bleaching using selected immobilized adsorbents. Oxidized olive oil was eluted using open-column chromatography packed with silica gel, bentonite, resin, Arabic gum, and charcoal at a 1:5 eluent system (w/v, adsorbent: oxidized olive oil). The smoke point was determined. The collected distilled vapor was injected into GC-MS to identify the volatiles eluted after partial refining with each of these bleaching compounds. The results showed that volatile compounds were quantitatively and qualitatively affected by the type of adsorbents used for the elution of olive oil and the smoking points of eluted oils. The most prominent detected volatile compounds were limonene (14.53%), piperitone (10.35%), isopropyl-5-methyl-(2E)-hexenal (8.6%), methyl octadecenoate (6.57%), and citronellyl acetate (5.87%). Both bentonite and resin were superior in decreasing the ratio of volatile compounds compared with other bleaching materials used. Resin immobilized medium was significantly affected (p < 0.05), raising the smoke point. These results highlighted some information regarding the characteristics of volatile compounds that result after the physical elution of olive oil through selected adsorbents.


Assuntos
Bentonita , Carvão Vegetal , Cromatografia Gasosa-Espectrometria de Massas , Azeite de Oliva , Alimentos , Ácido Hipocloroso , Resinas Vegetais , Compostos de Sódio
15.
Nat Commun ; 14(1): 5227, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633974

RESUMO

Two-photon absorption (TPA) fluorescence imaging holds great promise in diagnostics and biomedicine owing to its unparalleled spatiotemporal resolution. However, the adaptability and applicability of currently available TPA probes, which act as a critical element for determining the imaging contrast effect, is severely challenged by limited photo-luminescence in vivo. This is particularly a result of uncontrollable aggregation that causes fluorescence quenching, and inevitable photo-oxidation in harsh physiological milieu, which normally leads to bleaching of the dye. Herein, we describe the remarkably enhanced TPA fluorescence imaging capacity of self-assembling near-infrared (NIR) cyanine dye-based nanoprobes (NPs), which can be explained by a photo-oxidation enhanced emission mechanism. Singlet oxygen generated during photo-oxidation enables chromophore dimerization to form TPA intermediates responsible for enhanced TPA fluorescence emission. The resulting NPs possess uniform size distribution, excellent stability, more favorable TPA cross-section and anti-bleaching ability than a popular TPA probe rhodamine B (RhB). These properties of cyanine dye-based TPA NPs promote their applications in visualizing blood circulation and tumoral accumulation in real-time, even to cellular imaging in vivo. The photo-oxidation enhanced emission mechanism observed in these near-infrared cyanine dye-based nanoaggregates opens an avenue for design and development of more advanced TPA fluorescence probes.


Assuntos
Ácido Hipocloroso , Quinolinas , Oxirredução , Dimerização , Luminescência , Imagem Óptica , Compostos de Sódio
16.
Nat Commun ; 14(1): 4939, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607913

RESUMO

Recurrent mass bleaching events threaten the future of coral reefs. To persist under climate change, corals will need to endure progressively more intense and frequent marine heatwaves, yet it remains unknown whether their thermal tolerance can keep pace with warming. Here, we reveal an emergent increase in the thermal tolerance of coral assemblages at a rate of 0.1 °C/decade for a remote Pacific coral reef system. This led to less severe bleaching impacts than would have been predicted otherwise, indicating adaptation, acclimatisation or shifts in community structure. Using future climate projections, we show that if thermal tolerance continues to rise over the coming century at the most-likely historic rate, substantial reductions in bleaching trajectories are possible. High-frequency bleaching can be fully mitigated at some reefs under low-to-middle emissions scenarios, yet can only be delayed under high emissions scenarios. Collectively, our results indicate a potential ecological resilience to climate change, but still highlight the need for reducing carbon emissions in line with Paris Agreement commitments to preserve coral reefs.


Assuntos
Antozoários , Animais , Mudança Climática , Recifes de Corais , Aclimatação , Carbono , Ácido Hipocloroso , Compostos de Sódio
17.
Artigo em Inglês | MEDLINE | ID: mdl-37128141

RESUMO

Sodium persulfate solution is considered as an effective wet denitrification medium, however, it is unclear that the influence of the operating conditions on mass transfer characteristics parameters during the absorption of NO with sodium persulfate solution. To determine the key mass transfer characteristics parameters, the specific interfacial area a and the mass transfer coefficients kL,  kG, were determined based on the Danckwerts method during CO2 absorption in a bubble column. kL, kG  and a were calculated by correlations between the mass transfer coefficients of NO and CO2. Results showed that the specific interfacial area increased 77.64 m-1, the liquid phase mass transfer coefficient increased 2.49 × 10-4 m·s-1, and the gas phase mass transfer coefficient increased 0.71 × 10-5 mol·Pa-1·s-1·m-2 with superficial gas velocity increasing from 0.6 to 1.4 L·min-1. With the temperature of sodium persulfate solution increasing from 293 to 333 K, the specific interfacial area decreased 42.66 m-1, while the liquid phase mass transfer coefficient and the gas phase mass transfer coefficient increased 3.89 × 10-4 m·s-1 and 1.18 × 10-5 mol·Pa-1·s-1·m-2, respectively. The experiments results determined the correlations of a, kL, and kG  with the temperature of the absorption phase and the superficial velocity of the gas. It can serve as a guide to the enhancement of the sodium persulfate wet denitrification process.


Assuntos
Reatores Biológicos , Dióxido de Carbono , Sulfatos , Compostos de Sódio
18.
Int J Esthet Dent ; 18(2): 200-206, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37166772

RESUMO

White spot lesions are considered to be a major concern in esthetic dentistry. These lesions can be treated with noninvasive to less invasive procedures, which remain a challenge for many clinicians. The treatment of choice should be as minimally invasive as possible and should aim to minimize the color difference between the white spots and the healthy tooth enamel. Tooth whitening can be used initially to minimize this difference by rendering the extent of the white spot defects less visible, which permits a bevel effect. In addition, the microinvasive treatment option of resin infiltration, which does not involve trauma or require cavity preparation, can supplement the tooth whitening procedure to achieve excellent esthetic results, giving patients renewed confidence in their smiles. Therefore, the purpose of the present study was to illustrate the combination of dental bleaching and resin infiltration in a patient with white spot lesions caused by diffuse opacities (teeth that were undergoing enamel maturation at the time of occurrence of a systemic insult). The treatment aimed to improve the patient's esthetics, self-esteem, and quality of life.


Assuntos
Cárie Dentária , Clareamento Dental , Humanos , Estética Dentária , Qualidade de Vida , Clareamento Dental/métodos , Resinas Vegetais , Compostos de Sódio , Cárie Dentária/terapia , Protocolos Clínicos , Resinas Sintéticas
19.
Int J Biol Macromol ; 241: 124657, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119893

RESUMO

Electrochromic materials have attracted extensive attention recently due to their versatile applications in smart windows, displays, antiglare rearview mirrors, and so on. Herein we report a new electrochromic composite prepared from collagen and polyaniline (PANI) through a self-assembly assisted co-precipitation method. The introduction of hydrophilic collagen macromolecules into PANI nanoparticles makes the collagen/PANI (C/PANI) nanocomposite obtain excellent dispersibility in water, which provides good environmental-friendly solution processability. Furthermore, the C/PANI nanocomposite exhibits excellent film-forming properties and adhesion to the ITO glass matrix. The resulting electrochromic film of the C/PANI nanocomposite displays significantly improved cycling stability compared with the pure PANI film after 500 coloring-bleaching cycles. On the other hand, the composite films also exhibit yellow, green and blue polychromatic properties at different applied voltages and high average transmittance at the bleaching state. The C/PANI electrochromic material illustrates scaling potential for the application of electrochromic devices.


Assuntos
Compostos de Anilina , Nanocompostos , Colágeno , Ácido Hipocloroso , Compostos de Sódio
20.
Toxicology ; 492: 153529, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37120063

RESUMO

Chronic arsenic exposure causes myocardial damage. The aim of this study is to investigate if oxidative stress and reduction in NO is involved in the myocardial damage induced by arsenic in drinking water. Rats were divided into a control group and different doses of sodium arsenite. With increasing sodium arsenite concentrations in drinking water, localised inflammatory foci and necrotic myocardial tissues were gradually observed. Compared to the control group, the activities and gene expression of antioxidant enzymes in arsenic-exposed rats decreased. NO content and the NOS activity as well as the expression of NOS mRNA in the myocardial tissue of exposed rats, decreased, and the extracellular NO content of cardiomyocytes treated with sodium arsenite also decreased. The rate of cell apoptosis induced by sodium arsenite decreased after treatment with sodium nitroprusside (an NO donor). In conclusion, arsenic exposure in drinking water can lead to myocardial injury and cardiomyocyte apoptosis through oxidative stress and a reduction in NO content.


Assuntos
Arsênio , Arsenitos , Água Potável , Ratos , Animais , Arsênio/toxicidade , Estresse Oxidativo , Arsenitos/toxicidade , Compostos de Sódio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...